• 2022-05-31
    设 [tex=3.571x1.357]n9szCAW9NR93NzdWHX2+SBSXYvRAO7ROAT5M25kgbpM=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,称 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上所有元的和为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的迹,记作 [tex=1.571x1.0]Jkazn5fpwinwHmqJ2I5Nqw==[/tex], 即[tex=13.857x3.286]ApBtKiFHAOgbksEzlkUgQf4JIM54vj5iW2TpkcwMAEecQYQJE0eP9fJruMFo1OM7y2IbYTOuub3sz43Gx+h3AydvGiFrzpX0Js65mF2dRao=[/tex]求证: 当 [tex=7.643x1.357]n9szCAW9NR93NzdWHX2+SLhkxTINNav7EKG24K5sthCtbgcL4JhqKi++4owLONaO0Gy5ri0DjVm0oX9A5C4j+A==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵时,有(1)[tex=9.143x1.357]ApBtKiFHAOgbksEzlkUgQeOI9Z/tKprDVKWICKctsPZWhyqxtonKt84VgNWlxK2h8J9lG7fsyi4uYVP1GcCGdxfNJmNn8fk8MAGbeIboXtg=[/tex](2) [tex=6.0x1.357]ApBtKiFHAOgbksEzlkUgQQhMjhle0mjjuQZQ69gypBleTXvAOIo1pZ/d/9D2Kqi+[/tex](3) [tex=4.929x1.214]ApBtKiFHAOgbksEzlkUgQc2APyVmL+ajNnM/lIzexzWlt+t0+SE2A/VZVAHkcQvyzbZ8GGefr6DTwY6xR5XauQ==[/tex](4) [tex=7.143x1.357]ApBtKiFHAOgbksEzlkUgQQBYujH3bT6Qb1WqfyDs28E08muha9WBM9rWm03NfF7E[/tex]
  • 举一反三