• 2022-06-01
    数学,Z2上的多项式环由x^2+1和x^3+1生成的理想,备选答案(x^4+1x^6+1)需要详细计算过程,谢谢
  • 其实都不是.在一个有1的交换环中,由若干个元素a1,a2,...,an生成的理想,是包含这些元素的最小的理想.具体来说是由全体形如r1·a1+r2·a2+...+rn·an的元素组成的集合,其中r1,r2,...,rn可取环中任意元素.记号上常用(a1...

    内容

    • 0

      求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$

    • 1

      积分[img=136x52]1803d6afd4e6f95.png[/img]的计算程序和结果是 A: clearsyms xy=1/x^2/sqrt(x^2-1)int(y,x,-2,-1)3^(1/2)/2 B: clearsyms xint(1/x^2/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 C: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)-pi/3 D: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 E: clearsyms xint(1/x^2*sqrt(x^2-1),x,-2,-1)log(3^(1/2) + 2) - 3^(1/2)/2

    • 2

      执行以下语句的结果:dict1={"x":1,"y":2,"z":3}dict2={"x":4,"a":5}dict1.update(dict2) A: {"x":1,"y":2,"z":3,"x":4,"a":5} B: {"x":4,"a":5,"x":1,"y":2,"z":3} C: 有重复项,结果有误! D: {"x":4,"y":2,"z":3,"a":5}

    • 3

      集合A={x,y,z},B={1,2,3},试说明下列A到B的二元关系中,哪些能构成函数 A: {(x,1),(x,2),(y,1),(z,3)} B: {(x,1),(y,1),(z,1)} C: {(x,2),(y,3)} D: {(x,3),(y,2),(z,3),(y,3)} E: {(x,2),(y,1),(z,2)}

    • 4

      【单选题】Python中执行赋值语句x, y, z = 1, 2, 3后,再执行z, x, y = y, z, x,变量x、y、z中分别赋值为____。 A. x=1, y=2, z=3 B. x=3, y=1, z=2 C. x=2, y=1, z=3 D. x=3, y=2, z=1