中国大学MOOC: LDA(线性区别分析)与PCA(主成分分析)均是降维的方法,下面描述不正确的是( )
举一反三
- LDA(线性区别分析)与PCA(主成分分析)均是降维的方法,下面描述不正确的是( ) A: PCA对高维数据降维后的维数是与原始数据特征维度相关(与数据类别标签无关) B: LDA降维后所得到维度是与数据样本的类别个数K有关(与数据本身维度无关) C: 假设原始数据一共有K个类别,那么LDA所得数据的降维维度小于或等于K−1 D: PCA和LDA均是基于监督学习的降维方法
- 中国大学MOOC: 关于特征降维方法有线性判别分析(LDA)和主成分分析法(PCA),错误的是
- 下列可以用于特征降维的方法有( )。 A: 主成分分析 PCA B: 线性判别分析 LDA C: 深度学习 SparseAutoEncoder D: 矩阵奇异值分解 SVD
- 下列哪些方法可以用于特征降维的?() A: 主成分分析PCA B: 线性判别分析LDA C: AutoEncoder D: 矩阵奇异值分解SVD E: 最小二乘法LeastSquares
- 下列方法中,可以用于特征降维的方法包括( ) A: 矩阵奇异值分解SVD B: 主成分分析PCA C: 线性判别分析LDA D: 深度学习SparseAutoEncoder E: 最小二乘法LeastSquares