• 2022-06-03
    求曲线[img=52x19]17e0a7b88fe6397.jpg[/img]的凹凸区间及拐点的一般步骤:STEP1 求出二阶导数[img=34x20]17e0ac9556e2a74.jpg[/img];STEP2 求出所有使得二阶导数等于的点和二阶导数的点[img=83x15]17e0c3371be960f.jpg[/img];STEP3 检验二阶导数[img=34x20]17e0ac9556e2a74.jpg[/img]在各点[img=83x15]17e0c3371be960f.jpg[/img]两侧附近的符号,从而确定曲线[img=52x19]17e0a7b88fe6397.jpg[/img]的凹凸区间. 此外,若符号不同,则该点[img=58x19]17e0c51f42c31a2.jpg[/img]就是拐点. 否则,该点就不是拐点.
  • 零;0#不存在

    内容

    • 0

      函数f(x)=[img=40x76]17e0bf8d391c13e.png[/img]的不连续点为( ) 未知类型:{'options': ['x=0', ' x=[img=43x39]17e0bf8d4513730.png[/img](k=0,±1,±2,…)', ' x=0和x=2kπ(k=0,±1,±2,…)', ' x=0和x=[img=43x39]17e0bf8d4513730.png[/img](k=0,±1,±2,…)'], 'type': 102}

    • 1

      设函数f(x)在[img=13x14]17e435cbfdd5a0a.jpg[/img]处的一阶导数[img=38x21]17e436c130b17ac.jpg[/img]=0,二阶导数[img=66x24]17e436c0f3adc81.jpg[/img],则[img=33x19]17e440066ac4d9b.jpg[/img]是f(x)的极()值 A: 小 B: 大

    • 2

      已知f(x)具有任意阶导数,且[img=18x32]17d622a39cdd9ca.png[/img](x)=[img=75x35]17d622a3a717d8a.png[/img]则当n为大于2的正整数时,f(x)的n阶导数[img=34x34]17d622a3b2d544c.png[/img](x)=[img=129x35]17d622a3c15d078.png[/img] ( )

    • 3

      设随机变量(X,Y)在区域{(x,y): 0<|y|< x <2}内均匀分布,则以下结果正确的是 A: 当0<x<2时,[img=96x25]1802dded7db6eef.png[/img]. B: E(X)=4/3 C: 当0<|y|<2时,[img=105x45]1802dded872b92f.png[/img]. D: P(X<1)=0.5 E: 当0<x<2时,[img=110x45]1802dded915de6e.png[/img]. F: E(X)=2/3 G: 当0<y<2时,[img=95x43]1802dded9a54300.png[/img].

    • 4

      设曲线[img=114x26]1803d354f531134.png[/img]在点M处的切线与直线4y + x + 1 =0垂直,则该曲线在点M处的切线方程是( ) A: 16x - 4y - 17 = 0 B: 16x + 4y - 31 = 0 C: 2x - 8y + 11 = 0 D: 2x + 8y - 17 = 0