函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为
A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $
B: $[\frac{\pi}{4},\frac{5}{4} \pi]$
C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $
D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $
B: $[\frac{\pi}{4},\frac{5}{4} \pi]$
C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $
D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
举一反三
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- 函数$f(x) =sin^3 x, x \in [0,2 \pi]$的单调递减区间为 A: $[\frac{\pi}{2},\frac{3}{2} \pi]$ B: $[\frac{3}{2} \pi,2 \pi]$ C: $[0,\frac{\pi}{2}]$ D: $[0,2 \pi]$
- 下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
- 积分$\int_0^1 x \arctan xdx=$()。 A: $\frac{\pi}{4}+\frac{1}{2}$ B: $\frac{\pi}{4}$ C: $\frac{\pi}{4}-\frac{1}{2}$ D: $\frac{1}{2}$
- Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.