The columns of any [img=40x20]1803b6a907d8a6a.png[/img] matrix are linearly dependent.
举一反三
- If a matrix A is[img=40x20]1803b6ad35c48eb.png[/img]and the product AB is [img=40x20]1803b6ad3db03d2.png[/img], what is the size of B? A: [img=40x20]1803b6ad44dbaf6.png[/img] B: [img=40x20]1803b6ad4caf12b.png[/img] C: [img=40x20]1803b6ad55045e2.png[/img] D: [img=40x20]1803b6ad5caea53.png[/img]
- Let A be a [img=40x20]1803c4e60908a8b.png[/img]matrix, and the determinant of A is 0,then _________. A: there must be a column of elements in A that are all 0 B: there must be a column in A that is a linear combination of the other column vectors C: there must be two columns that are proportional to each other D: any column vector in A is a linear combination of the remaining column vectors
- If P is an[img=44x19]1803b6aa96e88c4.png[/img] matrix with orthogonal columns, then[img=72x23]1803b6aa9ec8a8d.png[/img]
- If A is a [img=40x20]1803c4e438d5e6e.png[/img] matrix and [img=141x21]1803c4e44127ce1.png[/img], then A must be singular.
- If A is a [img=40x20]180348ee73f28ea.png[/img] matrix , [img=124x21]180348ee7d54af8.png[/img], then A must be singular