构造下列推理的证明。
A: P∧S
B: P→S
C: S
D: P→(Q∨R)
E: P→(Q→R)
F: S→┐Q
G: S→Q
H: H. R
A: P∧S
B: P→S
C: S
D: P→(Q∨R)
E: P→(Q→R)
F: S→┐Q
G: S→Q
H: H. R
举一反三
- 构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
- 推理证明下列各题的有效结论。 ⑴p→ (q∨r ), (t∨ s)→p,(t∨ s) q∨r ⑵p∧q, (p? q)→ (t∨ s) (t∨ s)
- ( )不是正确的推理形式。 A: 前提: p∨q, pÛr, ~q∨s 结论: s∨ B: 前提: ~p∧q, p∨~r, r∨s, sÞu 结论: u C: 前提: pÞ(qÞr) 结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p 结论: q
- ( )不是正确的推理形式。 A: 前提: ~p∧q, p∨~r, r∨s, sÞu结论: u B: 前提: p∨q, pÛr, ~q∨s结论: s∨r C: 前提: pÞ(qÞr)结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p结论: q
- 请用归谬赋值法判定下列命题是否为重言式:((p→q)∧(r→s))∨(p∨r)→q∨s((p→q)∧(r→s))∨(¬q∨¬s)→¬p∨¬r((p→q)∧(r→s))∧(p∧r)→q∧s(f∨g→(q→(i«k)))∧(q∧i)∧(q∨m→f)→(i«k)