当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题具有无界解
举一反三
- 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题或具有无界解或具有无可行解。( )
- 根据对偶的性质,当原问题无界解时,其对偶问题无可行解,反之,当对偶问题无可行解,其原问题具有无界解.
- 关于线性规划的原问题和对偶问题,下列说法正确的是() A: 若原问题为无界解,则对偶问题也为无界解 B: 若原问题无可行解,其对偶问题具有无界解或无可行解 C: 若原问题存在可行解,其对偶问题必存在可行解 D: 若原问题存在可行解,其对偶问题无可行解
- 当对偶问题无可行解时,原问题一定具有无界解
- 根据对偶问题的性质,以下内容中正确的是 A: 当对偶问题无可行解且原问题存在可行解时,则原问题具有无界解 B: 若线性规划的原问题有无穷多最优解,则其对偶问题一定存在唯一最优解 C: 当原问题为无界解时,其对偶问题也必为无界解 D: 以上皆否