举一反三
- 设计一个奇偶校验电路,当 4 个输入逻辑变量 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex] 、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]、[tex=0.857x1.0]nFZS78e5wCWJ2ZClZqqa4Q==[/tex] 中有奇数个 "1" 时,输出为 1, 否则输出为 [tex=0.643x1.0]zF4Kx5he5zAWuyWsMZMVhw==[/tex] 。
- 设点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]分线段[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]成5:2,点[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的坐标为[tex=3.214x1.357]T5eFhnPu0rsIoQnWYaiYKg==[/tex],点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]坐标为[tex=3.214x1.357]zTAzSgXh1TiduADsLhWXzg==[/tex],求点[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的坐标。
- 图(a) 所示起重机在连续梁上,已知[tex=4.143x1.214]iI2wIEmq+gu2oraEYzpFsA==[/tex],[tex=4.143x1.214]x/NOrlUEXGXZLYNQQp6TPA==[/tex],不计梁质量,求支座 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]、[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]和[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]的反力。[img=378x282]179b1d368b0b737.png[/img]
- 试在 [tex=3.143x1.214]BypMH6cWAb0x8gikbHmOkm8G6z9CQ+Rgr92Svssi5/0=[/tex] 平面上作出[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]点, [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 点低于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 点[tex=2.786x1.0]17Ub2PYC2UdUgd2I7oPk+Q==[/tex], 在 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 点之前 [tex=3.0x1.214]wy0g10iLFS28CHeHCojRZEQ9RqV/uWeNNE6zR60jGGo=[/tex][img=530x687]17ae084cdafc4e6.png[/img]
- 某绿色固体 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可溶于水,水溶液中通入[tex=1.857x1.214]3lSxwwrKpCzTzhFb41L+0A==[/tex]即得棕黑色固体[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 和紫红色溶液 [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex] 。[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与浓 [tex=1.857x1.0]J5/m7wHLEvPVmioJRGa25A==[/tex] 溶液共热时得黄绿色气体[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 和近乎无色溶液 [tex=0.786x1.0]EQXwRT/L3tg9/NvDMlGuPg==[/tex] 。将此溶液和溶液 [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]混合即得沉淀[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 。 将气体[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 通入 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的溶液,可得 [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]。试判断 [tex=5.571x1.214]rUG0pGssOsxyQnGQCG9LbclgBrdiLfdgTBZfBikStuA=[/tex]各为何物?
内容
- 0
如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]、[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]为集合,[tex=17.357x1.357]c3Xi3Sgw0dB6zisJX0Sxv/wfxO1WBRcjBouHvVzd6mjJtHLyBL02tEL+O+QrEzFYzJpdbWmr82YxQqio3Lp22w==[/tex]是否成立?
- 1
[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]四个人中要派两个人出差,按下述三个条件有几种派法?如何派?a) 若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]去则[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]和[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]中要去一人;b) [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]和[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不能都去;c) [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]去则[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]要留下。
- 2
设[tex=3.143x1.214]fC00PSr7EsIcGln2s0pq/A==[/tex]为3个随机事件,则下列结论中正确的是 未知类型:{'options': ['若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]互不相容,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容[br][/br]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]对立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]对立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]也是对立事件', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]独立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]独立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]一定独立[br][/br]'], 'type': 102}
- 3
假定[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]和[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]为集合。证明或推翻[tex=14.714x1.357]qjN8bs6yhEt9tj4GRhqEWInvex2PNfQ7bq91bcVQVbo=[/tex]。
- 4
三块平行金属板 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 和 [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],面积都是 [tex=4.643x1.214]HWnG77xXCFlYbw8wmygDUw==[/tex],[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相距 [tex=3.929x1.214]ZHmPwG7WPz7LcSAtcOvxSw==[/tex],[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex] 相距 [tex=3.929x1.214]hwsv1DcY2xzIk42ufGnEZA==[/tex], [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex] 接地, [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 板带有正电荷 [tex=5.214x1.429]Q4QhwqerSaW0BKzZSrnbjutWe7/KBwrbo2irHpVDD80=[/tex],忽略边缘效应.求[tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex] [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex] 板上的电荷为多少?[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex] [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 板电势为多少?[img=238x212]17a8582f6418b64.png[/img]