• 2022-06-01
    计算[img=58x47]1803072fbccdbd2.png[/img]关于y的二阶偏导数应使用的语句是
    A: Dt[x*Exp[y]/y^2,{y,2}]
    B: D[xExp[y]/y^2,y,2]
    C: [img=119x27]1803072fc52a740.png[/img]{{y,2}}]
    D: D[x*Exp[y]/y^2,{y,2}]
  • D

    内容

    • 0

      求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2

    • 1

      在区域<img src="http://img2.ph.126.net/gYKpVz-ihv2c735JpXLFXA==/148900262780427590.png" />画出函数<img src="http://img1.ph.126.net/1MufBuQ2l1d-e3P0WpTtOA==/6597356739194210350.png" />的密度图形。? ContourPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|DensityPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|DensityPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|ContourPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]

    • 2

      ‍求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是‏ A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]

    • 3

      分段函数:[img=206x91]18037123bea18f3.png[/img],下面程序段中正确的是__________。 A: If x < 0 Then y = 0If x < 1 Then y = 1If x < 2 Then y = 2If x >= 2 Then y = 3 B: If x > =2 Then y = 3ElseIf x > =1 Then y = 2ElseIf x > =0 Then y = 1Else y = 0End If C: If x >= 2 Then y = 3If x >= 1 Then y = 2If x > 0 Then y = 1If x < 0 Then y = 0 D: If x < 0 Then y = 0ElseIf x > 0 Then y = 1ElseIf x > 1 Then y = 2Else y = 3End If E: If x < 0 Then y = 0If 0 <= x <1 Then y = 1If 1 <= x < 2 Then y = 2If x >= 2 Then y = 3

    • 4

      ‏求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解‌ A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]