设z的初值是3,求下列表达式运算后的z值。(1)z+=z (2)z-=2(3)z*=2*6 (4)z/=z+z (5)z+=z-=z*=z
举一反三
- 若x=3,y=2,z=1,求下列表达式的z的值为()z+=(x
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 已知x=2,y=3,z=4,则经过z-=--y–x--运算后,z的值为()。
- 设A={z|z+√2|≤1},B={z|z|≤1},则A∩B中幅角主值最大的复数是
- 设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)