设 [tex=8.857x3.929]hB8sGfF8hpZRTKdvt1J/eL30K2Bsg5LAjl5Q3BhanKOXYpx8pZFG8oGNLHqVBWfIrkwkDzPFlfqD9NAmNYEMQwZ6q/s35te25lPWyUjLn9yJEm0LAVp+cWicWPTo+o4v[/tex], 易知它的三个特征值为[tex=2.429x1.214]BNLMXBeGoYJlvZ30vwTssw==[/tex],试将A 表成[tex=4.5x1.214]KRvmLXpsX3LUN39RKID6Dg==[/tex],其中[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的若尔当标准形,[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]是变换矩阵,求[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex],[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和[tex=1.714x1.214]OdUN254ilSosWe6t1p+3Hw==[/tex].
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 元素全为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]看成有理数域上的矩阵是否可对角化?如果[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]可对角化,求出有理数域上一个可逆矩阵[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex],使[tex=3.143x1.214]c/2XwL5aczU9PTgs0l7Ddw==[/tex]为对角矩阵。
- 已知[tex=5.0x1.286]nNRgYScRPw16N2lBJqtTsA==[/tex],[tex=5.0x1.286]ZIJz5gTGIgdeWAGMFdoL1A==[/tex],则[tex=6.214x1.286]wE5wtWoL9HR6uGPZrIzvHA==[/tex]成立的[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]值为 A: 1 B: 2 C: 4 D: 6 E: 8
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.