• 2022-06-11
    设函数g(x)可微,h(x)=lng(x),h’(1)=1,g’(1)=2,则g(1)等于()。
    A: e
    B: 1
    C: 2
    D: 3
  • C

    内容

    • 0

      若$(f(x),g(x))=1,(f(x),h(x))=1$,则下面结论不正确的是( )。 A: $(f(x),f(x)+g(x))=1;$ B: $(f(x),h(x)+g(x))=1;$ C: $(f(x),h(x)g(x))=1;$ D: $(f(x)g(x),f(x)+g(x))=1.$

    • 1

      【单选题】已知f(x)=5,g(x 1 ,x 2 ,x 3 )=x 1 , 其中x,x 1 ,x 2 ,x 3 均为自然数,新函数h可递归的构造如下:h(0,x) = f(x), 且h(S(n), x) = g(h(n,x),n,x),请按递归式进行计算下列式子,正确的是_____。 A. h(1 ,x) = 5 B. h(2 ,x) = 5+x C. h(3 ,x) = 5+2x D. h(4 ,x) = 5+3x

    • 2

      下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG

    • 3

      【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立

    • 4

      互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立