If A is a [img=32x20]1803c4e3bc9049f.png[/img] matrix and [img=133x21]1803c4e3c4a459d.png[/img], then A must be singular.
举一反三
- 设[img=127x53]17f1b3d6db98b83.jpg[/img],f(x)=arctanΧ,则[img=56x55]17f1b3d82842941.jpg[/img]=()。 A: π B: 3π/4 C: -3π/4 D: 2π
- Let A be a 4×4 matrix, the determinant of A is 1/3, and [img=21x20]1803c4e4937ebc3.png[/img] the adjoint matrix of A, then [img=115x27]1803c4e49b725a2.png[/img]=________. A: 1 B: 3 C: 6 D: 9
- 求不定积分[img=115x46]17da65382f8e1b9.png[/img]; ( ) A: x - (5*log(x + 1))/4 - (3*log(x - 3)) B: (5*log(x + 1))/4 - (3*log(x - 3)) C: x - (5*log(x + 1))/4 - (3*log(x - 3))/4 D: (5*log(x + 1))/4 - (3*log(x - 3))/4
- If A is a [img=40x20]1803c4e438d5e6e.png[/img] matrix and [img=141x21]1803c4e44127ce1.png[/img], then A must be singular.
- 求不定积分[img=121x54]17da653839aa6ae.png[/img]; ( ) A: log(x^2 + 3*x + 25/4)/4 + (5*atan(x/2 + 3/4))/4 B: log(x^2 + 3*x + 25/4)/4 C: (5*atan(x/2 + 3/4))/4 D: log(x^2 + 3*x + 25/4)/4 - (5*atan(x/2 + 3/4))/4