已知某事件 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]的事故树如图所示。(1)试计算此事故树的最小割集、最小径集, 并进行分析。(2)用 [tex=0.714x1.0]GaUtP3vLwkctTSP/mzuDiw==[/tex] 表示各基本事件[tex=1.071x1.214]xeonBC5gK1NX8OhFCxUZFA==[/tex]发生的概率, [tex=14.786x1.214]dCeqobLr3rRIdqTnSolpXzvehrXWgRh0NUJg67Co6SqJY8894rAQ3Wnpplrn7aT1eGlJPwRIgM+lLzrLl81ZfQ==[/tex], 计算顶上 事件发生的概率。(3) 分析各基本事件的结构重要度和概率重要度。[img=437x414]17ce537b53e701d.png[/img]
举一反三
- 设事件[tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex]在每一次试验中发生的概率为 0.3 .当[tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex]发生不少于 3 次时,事件[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]发生.(1) 进行了 5 次试验,求事件[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]发生的概率;(2) 进行了 7 次试验,求事件[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]发生的概率.
- 设 [tex=6.286x1.214]ntTGV+INANaOxwQM3oA55RLn4eld8AnluOkUMkOGtzo=[/tex] 相互独立, 而 [tex=4.571x1.357]fglrqteuMfMHCv/TmbwaC8rHfIjErdxlID3USnnzwfI=[/tex], 试求: (1) 所有事件全不发生的概率; (2) 诸事件中至少发生其一的概率; (3) 恰好发生其一的概率.
- 树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 如图 16.18 所示. 回答以下问题.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]的树高为几?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]有几个分支点?[img=273x205]17926ce3f0ebfd1.png[/img]
- 设[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]是三个随机事件,试用[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]表示下列各事件:(1)恰有[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生;(2)[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]都发生而[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不发生;(3)所有这三个事件都发生;(4)[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]至少有一个发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)不多于一个事件发生;(9)不多于两个事件发生;(10)三个事件都不发生.
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]为两事件,[tex=4.286x1.357]f2/QUECS2Xh01+rxCnKQrw==[/tex], [tex=4.286x1.357]E9G2+TtFKT3LPAmUm/aNIQ==[/tex], [tex=5.0x1.357]r3cOlHX0y2q0HwG0hFr1kQ==[/tex], 求:(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]发生但[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]不发生的概率;(2)[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都不发生的概率;(3)至少有一个事件不发生的概率.