劳斯判据用( )来判定系统稳定性。
A: 系统特征方程
B: 开环传递函数
C: 系统频率特性的Nyquist图
D: 系统开环频率特性的Nyquist图
A: 系统特征方程
B: 开环传递函数
C: 系统频率特性的Nyquist图
D: 系统开环频率特性的Nyquist图
A
举一反三
- 劳斯判据用( )来判定系统稳定性。 A: 系统特征方程 B: 开环传递函数 C: 系统频率特性的奈奎斯特图 D: 系统开环频率特性的奈奎斯特图
- Nyquist稳定判据是用系统的开环频率特性图判断闭环稳定性。
- 下列不属于判断线性系统稳定性的方法为 A: 描述函数 B: 系统闭环极点 C: 劳斯判据 D: 系统开环Nyquist图
- 已知某控制系统的开环频率特性函数的极坐标图如图所示,其开环传递函数为\(G(s)=\dfrac{20}{(s+1)(2s+1)(5s+1)}\),利用Nyquist稳定判据判断该系统的闭环稳定性为( )
- Routh判据是根据闭环传递函数分母构造特征方程,而Nyquist判据是根据开环频率特性判断闭环的稳定性。
内容
- 0
劳斯判据应用于控制系统稳定性判断时是针对于() A: 闭环系统的传递函数 B: 开环系统的传递函数 C: 闭环系统中开环传递函数的特征方程 D: 闭环系统的特征方程
- 1
频域稳定判据是根据开环系统频率特性曲线判定闭环系统的稳定性。 A: 正确 B: 错误
- 2
中国大学MOOC: 频域稳定判据是根据开环系统频率特性曲线判定闭环系统的稳定性。
- 3
奈奎斯特稳定判据—根据系统的开环频率特性判断( )稳定性。
- 4
奈奎斯特稳定判据是利用开环频率特性来分析闭环系统稳定性的。