A: A.(x+2)e2x B.(x+2)ex
B: C.(1+2x)e2xD.2e2x
举一反三
- 已知f(x)=xe2x,则f’(x)=( ) A: (x+2)e2x B: (x+2)ex C: (1+2x)e2x D: 2e2x
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- ∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
- 函数$f(x)={{(x+2)}^{2}}{{(x-1)}^{3}}$的极值点是( )。 A: $x=-2$ B: $x=1$ C: $x=-2$ 与 $x=1$ D: $x=-2$ 与 $x=-\frac{4}{5}$
- 【单选题】若f(x- 1)= x 2 (x-1),则f(x) =(). A. x(x+ 1) 2 B. x(x- 1) 2 C. x 2 (x+1) D. x 2 (x- 1)
内容
- 0
已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
- 1
【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;
- 2
【单选题】设 f ( 1-cos x ) =sin 2 x, 则 f ( x ) = A. x 2 +2x B. x 2 -2x C. -x 2 +2x D. -x 2 -2x
- 3
已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
- 4
设f(x)=ln x,g(x)=x+2,则f[g(x)]的定义域是() A: (-2,+∞) B: [-2,+∞) C: (-∞,2) D: (-∞,+∞)