求下列积分∫|1-x|dx和∫|x|dx,
举一反三
- ∫x^2/√(1-x^2)dx用x=sint代换得到的结果和直接把x/√(1-x^2)dx换成-√(1-x^2)dx做分部积分为何不一样
- 定积分∫arcsinx/(x^2*√1-x^2)dx,下限1/2,上限√(3)/2
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 求积分∫(x^3)e^(x^2)dx
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)