y=cos(3x²-2),求dy
举一反三
- 函数\(z = \ln \left( {3x + {y^4}} \right)\)的全微分为 A: \(dz = { { 3 + {y^4}} \over {3x + {y^4}}}dx + { { 3x + 4{y^3}} \over {3x + {y^4}}}dy\) B: \(dz = {3 \over {3x + {y^4}}}dx + { { 4{y^3}} \over {3x + {y^4}}}dy\) C: \(dz = {3 \over {3x + {y^4}}}dy + { { 4{y^3}} \over {3x + {y^4}}}dx\) D: \(dz = {3 \over {3x + {y^4}}}dx - { { 4{y^3}} \over {3x + {y^4}}}dy\)
- 曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$
- 1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
- 求下列函数的值域:(1)y=(x^2+2x+3)/x^2;(2)y=(x^2-3x+4)/x;(3)y=3x/(2x^2-1),x∈[2,4]