11、(4分)方程x^2-y^2/4+z^2=1表示 旋转单叶双曲面?
举一反三
- (4分)方程x^2-y^2/4+z^2=1表示 旋转单叶双曲面?
- x^2-y^2/4+z^2=1是旋转单叶双曲面?
- 在matlab中画函数(x^2+y^2)/9-z^2/4=1的旋转单叶双曲面
- 以下方程在空间中表示柱面的是( )。 A: \( {x^2} + {y^2} + {z^2} = 1 \) B: \( z = \sqrt { { x^2} + {y^2}} \) C: \( {x^2} + {y^2} = 4 \) D: \( z = {x^2} + {y^2} \)
- 已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( ) A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \) B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \) C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \) D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)