在[0,2π]区间绘制 的曲线程序:x=0:pi/100:2*pi;( );plot(x,y);
A: A.y=2x^2sin(x);
B: B.y=2*x^2*sin(x);
C: C.y=2*x.^2.*sin(x);
D: D.y=2*x^2.*sin(x);
A: A.y=2x^2sin(x);
B: B.y=2*x^2*sin(x);
C: C.y=2*x.^2.*sin(x);
D: D.y=2*x^2.*sin(x);
举一反三
- 在一个图形窗口同时绘制[0,2π]的正弦曲线、余弦曲线,不可以使用命令( )。 A: x=(0:0.01:2*pi)'; Y=[sin(x),cos(x)]; plot(x,Y); B: x=(0:0.01:2*pi);Y=[sin(x);cos(x)];plot(x,Y); C: ezplot(@(x)sin(x),@(x)cos(x),[0,2*pi]) D: ezplot(@(x)sin(x),[0,2*pi]),hold on ,ezplot(@(x)cos(x),[0,2*pi])
- (3分)<br/>在一个图形窗口同时绘制[0,2π]的正弦曲线、余弦曲线,可以使用命令( )。 A: x=(0:0.01:2*pi)';<br/>Y=[sin(x),cos(x)]; plot(x,Y); B: x=(0:0.01:2*pi);<br/>Y=[sin(x);cos(x)]; plot(x,Y); C: fplot(@(x)sin(x),@(x)cos(x),[0,2*pi]) D: fplot(@(x)sin(x),cos(x),[0,2*pi])
- 曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$
- 【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y