举一反三
- 列举符合下列条件的函数:1)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]严格减少的奇函数;2)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]单调减少的偶函数;3)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]是偶函数、周期函数、且不存在单调区间;4)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex] 是奇函数、偶函数、单调函数、周期函数。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]连续、单调、有界,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]一致连续。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]是下凸,且有界,则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是常数函数。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在开区间[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]单调增加,则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的间断点都是第一 类间断点。
- 证明:[tex=5.929x1.286]nbBEZc+mdUw41wOENHYK0tcvkZXPbIkC9IrS45BkpmM=[/tex]在[tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]不是偶函数,不是周期函数, 不是严格增加函数,也不是单调减少函数。
内容
- 0
证明: 函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在开区间[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex] 一致连续 [tex=1.0x1.286]rOrw2E3Z1BdSSAw41TowZ4iHlO4qaDBsGJ7nVzEmCWM=[/tex]函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在开区间[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]连续,且[tex=3.5x1.286]jf4KYTqBi/2JKJP0u55qBg==[/tex]与 [tex=3.429x1.286]PdwADi/W7zeYvYZrdNxghQ==[/tex] 都存在(提示: 证明必要性要用到柯西收敛准则)。
- 1
设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是连续函数。(1) 利用定义证明函数 [tex=7.357x2.643]wj19iVziwhcddHoSbOeZ53gjMBxjQAH/PcfTSpadvE0UnkPwDslb00HFtKYkgM9X[/tex] 可导, 且[tex=5.5x1.286]aioBMzvqzBeZ8o5EjtXw19ELszAjdIRruviyhqqX+L4=[/tex];(2) 当[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是以 2 为周期的周期函数时, 证明函数 [tex=13.786x2.786]Vhx2KvWIsGdQGZadW3if7acVl7IXSwWOwcV1slKNUnHQ+aZuky9CS29QEB/7qIHsr9w3YIYs6RJhvITWAy2vjHKGtDLy8R6Pbmh6BDCQrkk=[/tex]也是以 2 为周期的周期函数。
- 2
设函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 有相同的定义域,证明:1)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是偶函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;2)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;3)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] , 一个是偶函数另一个是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是奇函数。
- 3
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]连续,且[tex=7.357x2.286]cSLIBokTuU6OfUR6uQRJvy99JL79iSVvhdw9Tks/WcNdaLJMDS/+HqRnrJuhEhit[/tex], 则[tex=3.714x1.286]bdk1O+10iPWAR25LzAABM4M0oPDrf7rHpG+DMmWfuvM=[/tex]。
- 4
证明: 若函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]可导,[tex=3.214x1.286]Yye/Zf1rUtX5Rw78gAw6eBMS+14gnV1AkLPrqCKEvrM=[/tex],[tex=4.571x1.286]dKfAGo3rU9ALC9dg+OnL06RoMzozmczP4A5vbEP9n1rsUE9UdiJO1d2n36EOpeHQ[/tex], 且[tex=2.286x1.286]6T11TlvSr5csjeOcKvNqDw==[/tex], 则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]存在不动点[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex], 即 [tex=3.786x1.286]a7syGVnHJ8vV4xZ+ta96jg==[/tex] 。