• 2022-06-09
    设[tex=5.786x1.286]UyJyJNUtqi/yfE3jsjvj4xT6k6f/Nj9CHniYQXqvmUek8Vd23f9njMiSTjxomsSk[/tex],对[tex=4.214x1.286]jQrHutl9ryU1F/0rvvW8PQ==[/tex],求[tex=5.429x1.286]naWSEnPLtRAekJ7P3fjNmpRPignuts1ZDylqhjOCu8wxkgw3X8YWtkSR8fUrRMbK[/tex]与[tex=8.5x1.286]91FsMKY0MrzfLSc0MiKE54LAAOM+w4HJOxC168u2b7Q=[/tex] .
  • [b]解[/b]    因[tex=3.643x1.286]rsHzf/phgOjMl9fzcvUTCawOr/IuSRgQtDghNTst5Ag=[/tex]的密度函数为[tex=15.143x4.214]5VHmefGvW8lk7YwOcn4RYBs21YuAgSCw8TaBde0nAZoRYTv3awJfBmLZx7mXenKw6JwET3m8Q70/6OK00nFnWIU7/iYBOVJ8F3JH35oOld1kihHkEojINZ8Ya1sc5dJTPucepWLsqweaXJpDqapSY8qIGJPnqLf/Rn++K7wQkK8hECh1LSqqrOMzd2uSl1uq[/tex].由正则性知[tex=11.714x2.429]QDF3on418hztfquUcJypQb9GQFDG4BBs4IiwaEe0rUHqKEc5JnfoUvavRLaz2K3WrVlk+8KDAMPjkXVPDLBbmL8yrwtgVimIQGvbtA7EWBAvHwYEv/m41WP3ByNbQpDp[/tex],可得[tex=10.857x2.714]9mLSumfZ0e1kvWZBDMh5UwP7ubOziNNTrJIGvqOvjBX9dCXoaYYGN5UVbHN498jGfd7M5loP+0/APLSkTlLpU+z6lWhrsgjJLgSpivNJhHwlAc+oQqQ7u+SCdk/MdCrl[/tex],[br][/br]故[tex=2.071x1.286]gJ3i9ssmINIvRMqdy6/9GA==[/tex][tex=12.214x2.429]QDF3on418hztfquUcJypQU98OjB8mfPIm0OMzkAY5rLHyGjgZtH/hy6vgqo3u+Q9CvtwjCbtTx3UwtlDCBF6r3J93s+qWi8203soDcJjZEju0ilv6D3tMXepStSBchZKrECix2v6hIL9shaTLMpSQA==[/tex][tex=10.143x2.429]Ln8mJIZRoqmGFbHJR/novku60cZh76s+OoWndjfN3r/am4/HbMzFwBTjzN6I26UUwN5zb/3ldNz84jNaatOlAEFAiGsl61F33eD/+jNo6CaYi4hgYlnOpuv8EGXlljRo[/tex][tex=7.857x2.286]Ln8mJIZRoqmGFbHJR/novku60cZh76s+OoWndjfN3r+imweISVVGzJ79hp9ENPyvYHRUNjPrz3ujNJNI3NdaUQ1bTtJ4hf2gXS96evB7r6sdidnMqcCVXSc7w/F3CJ5v[/tex][tex=0.929x2.143]5GCW1/KJzTZx1eZoxlTbyu07A1B5/Qkq9VN9M0PjXOc=[/tex];[tex=2.071x1.286]S2UQ5ZckZNXjjYEJV3KaiQ==[/tex][tex=12.643x2.429]QDF3on418hztfquUcJypQYmTqEwZrp9IK3bqBnzy14H1Mnr0bl2GafCDA/QNFuWjWHLf8dClYmTG33lwxbRHwDUM0CUeM8RZftZl5UADaJpCkMOcBtBx/YuHPFtBGkDxz2HWUMgp2cLKrleq6ZfyRw==[/tex][tex=11.143x2.429]Ln8mJIZRoqmGFbHJR/novo81kRQDFm2XTTssH11JEM3dRfxRQFc+i7mNQLIDUJzaZ2ukcBIKKU7Bg3Jpu1czyFxhue0Kbz/yGADpYUDJ48aerlCGEqh2swCG26fqNmYi5w2JxlaW+nrua7yHDB/zFA==[/tex][tex=7.857x2.286]Ln8mJIZRoqmGFbHJR/novo81kRQDFm2XTTssH11JEM2AiPR5C0ozB+q3NZjFmSjaFRqdnM3uu9CtPsInEjiJudff+f9yiRgtSjw3DnfWyfx3sxBzC+ubXCvbJVSsGrA9[/tex][tex=3.643x2.429]E3VIpKrXjn7kVJXqi16AAFcqEhvDnUtToGZnEuxgZC1G6Lffb05lTtZuSGvriiUI[/tex];[tex=2.071x1.286]xq0wGEsrjmRmdUly++Ef/g==[/tex][tex=12.643x2.429]QDF3on418hztfquUcJypQVqQLeImaVlG4DiVDWwMT5SFcvuZc40nUgPWQTC1RHWPmm9AmD9FmPF7HpiRLMxlp7J3id4YwC2EG2l4PlCYUmq4hINJdZ84LjlZeK60P3e3zX79bSZpX5jce9RYxGTV+A==[/tex][tex=11.143x2.429]Ln8mJIZRoqmGFbHJR/novo81kRQDFm2XTTssH11JEM3dRfxRQFc+i7mNQLIDUJzaZ2ukcBIKKU7Bg3Jpu1czyIv1HJjMhorqwmijVXsGpTMhLQk60bVCP8d+iGzjMFU9if/vMTRWrImrRxxwd//tBw==[/tex][tex=7.857x2.286]Ln8mJIZRoqmGFbHJR/novo81kRQDFm2XTTssH11JEM2AiPR5C0ozB+q3NZjFmSjaFRqdnM3uu9CtPsInEjiJuU+yHc2x/Sd/CGz9f1KpKIy/Bz7eue9Uo/UJZ+LYTT9U[/tex][tex=6.286x2.429]E3VIpKrXjn7kVJXqi16AADDLzykRGpiASdomZJyhziQJuQjnnJ2U99G0FA40dxb0BR+uEHtsfe6WmaYsbHFHOg==[/tex];[tex=8.143x1.357]XcxQZIRA9bML8gE/G5uewGUUGVDdNUvvb6lclC9EEpM=[/tex];[tex=9.429x1.286]ERUVhVeSewUebUmUJNgsL14dDuET2nuGHZFl7I76NVY=[/tex][tex=4.286x1.286]nViemFutUSwHMtV5fXQ8qw5G8fQw3sXrb/HPQBz6sg4=[/tex][tex=7.429x2.143]n0eJp/cUKfHQN4txVQXo9QCmJOnjRDmD460cU1S4wq+Dl9rAIQOcd0wVy4m5AGzA5v7dJ+oeEeldL8283aI1W1XLyBJVEj5FYnNQhb8EYRw=[/tex][tex=1.214x2.143]5GCW1/KJzTZx1eZoxlTbyhWF5D31AubqWBIYx/mgA+4=[/tex];[tex=9.429x1.286]2XiI7VwkAJ2iYdAOjupGRfsYSgNaK+YuzMGcWff7m9U=[/tex][tex=8.429x1.286]K8Z+rVZ9gWNWWkfiZTU9u0ZAYQoAyUfHorc5b1z3evy8xUqOxQM49N9RfW7LasHz[/tex][tex=7.714x2.071]n0eJp/cUKfHQN4txVQXo9T3Z1gxCzMd+rSuECVH4XhRGTfombkPaVnAVny3zMeYmQRhjSsR6H+ARck50pccwYA==[/tex][tex=6.714x2.071]JprMJ3prN3aD5G3lAA59ksTh3yjG3uVgOi59yf3cOYAtVNPZrKN0mTDaVMmBZTf0JZ0A1bMVpbjCzMuilQ6Ykdvp0F9ljRzJ+0h8X13view=[/tex][tex=4.357x2.143]I7Fs8M+DCiJBslUnuMvZ/GURd+VWH4FwVlkBfaHfqLO34DDGKP4p/T+EowfY0ZcAM0FYbixPmEToYH8fJ4Wzm1jt7pq0qCJwvMQkjrjHqJE=[/tex] .

    内容

    • 0

      \(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)

    • 1

      输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

    • 2

      设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)

    • 3

      以下程序的输出结果是() main( ) { int i , x[3][3]={9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1} , *p=&x[1][1] ; for(i=0 ; i<4 ; i+=2) printf("%d " , p[i]) ;

    • 4

      若要将一个长度为N=16的序列x(n)重新位倒序,作为某一FFT算法的输入,则位倒序后序列的样本序号为( )。 A: x(15), x(14), x(13), x(12), x(11), x(10), x(9), x(8), x(7), x(6),<br/>x(5), x(4), x(3), x(2), x(1), x(0) B: x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7), x(8), x(12), x(10),<br/>x(14), x(9), x(13), x(11), x(15) C: x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14), x(1), x(3), x(5),<br/>x(7), x(9), x(11), x(13), x(15) D: x(0), x(8), x(4), x(12), x(2), x(10), x(6), x(14), x(1), x(9), x(5),<br/>x(13), x(3), x(11), x(7), x(15)