A: $\frac{z}{z-2}-\frac{z}{z-0.5}$
B: $\frac{1}{z-2}-\frac{1}{z-0.5}$
C: $\frac{z}{z-2}+\frac{z}{z-0.5}$
D: 不存在
举一反三
- 信号$x[n]=2^nu[n]$的Z变换结果是 A: $\frac{z}{z-2}$ B: $\frac{z}{z-0.5}$ C: $\frac{1}{z-2}$ D: $\frac{1}{z-0.5}$
- 信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$
- 当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
- 信号$x[n]=n^2u[n]$的Z变换结果是 A: $\frac{z+1}{(z-1)^3}$ B: $\frac{z+1}{(z-1)^3}z$ C: $\frac{z+1}{(z-1)^3}z^2$ D: $\frac{(z+1)^2}{(z-1)^3}z$
- 信号$x[n]=u[n]$的Z变换结果是 A: $\frac{1}{z+1}$ B: $\frac{z}{z-1}$ C: $\frac{1}{z-1}$ D: $\frac{1}{z}$
内容
- 0
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 1
对两个二水平因子$A$和$B$来说,以下哪个式子不能表示交互效应$INT(A,B)$? A: $\frac{1}{2}\{\bar{z}(B+|A+)-\bar{z}(B-|A+)\}$-$\frac{1}{2}\{\bar{z}(B+|A-)-\bar{z}(B-|A-)\}$ B: $\frac{1}{2}\{\bar{z}(B+|A+)+\bar{z}(B-|A-)\}$-$\frac{1}{2}\{\bar{z}(B+|A-)+\bar{z}(B-|A+)\}$ C: $\frac{1}{2}\{ME(B|A+)-ME(A|B+)\}$ D: $\frac{1}{2}\{ME(B|A+)-ME(B|A-)\}$
- 2
信号$x[n]=u[n]-u[n-5]$的Z变换结果是 A: $\frac{z^{-5}}{z-1}(1-z^5)$ B: $\frac{z}{z-1}(1-z^{-5})$ C: $\frac{z^4}{z-1}(1-z^{-5})$ D: $\frac{z^{-4}}{z-1}(1-z^5)$
- 3
4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 4
序列 2nu(n) 的Z变换表达式为[填空1],其收敛域为( ) A: z/(z-2);|z|<2 B: z/(z-2);|z|>2 C: z/(z-1);|z|>1 D: z/(z-1);|z|<1