• 2022-06-10
    求圆盘[tex=5.643x2.0]qgh6cWm2HfWz24TaQJF2nrM62Z6b1s/B5ou0vjQujR0=[/tex]绕[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴旋转的旋转体的体积
  • 由[tex=5.643x2.0]iWfFVeEmDOBR+PqJRNWa0CMvFRmImSPocpy6K/drzCw=[/tex]得[tex=6.357x1.643]oM1wZAnMKsVVHG5GIMj18Wlczs+G7xjgqiLJwMRV8oA=[/tex],如图所示,[img=192x162]1776ba86fc368dc.png[/img]故旋转体的体积为[tex=22.143x2.857]M8Nlu5zwoUG3iOx+P1kHv9WodRMP/MuIAkSp1OOGv4+WzRnwfpz+1Lr/XBLZsRqDnHx5w5VrDzdxIH3ncNUKjGjpGTS3AXd87Qx6dKSTogX+ts7B0VqT7bR1eEVyDRSvEPkaJdzGkcQe45tXKbcfQVR2NL4MP5lUCDXtiY8AsZjbwRZbVu+L6fJS9npnDn4M[/tex][tex=19.714x2.857]fflc2pdMattIJit/0oKe/dzUJf9HICtZOSWTzYC/JrSNdzaC5GXovkFQiNdVrIehSWIT7bIy4Plz820FE3N9sLMEUhtEWtqk5M06u/KBEfHbaJM5/hKjSF0P6yHVwSYym7wRapWIOQ4et5SG2n7kqLD+M9O/CObgKFudcDEzqF0=[/tex]

    内容

    • 0

      求曲线[tex=6.786x1.214]zCpxDt7leu+TU1gGqkkjg5LCO67ZNBAOQE3v+e3MpIs=[/tex]及2[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴所围成的平面图形绕[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴旋转所成的立体的体积.

    • 1

      求下列平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴旋转所产生的旋转体的体积.  曲线 [tex=2.786x1.429]GAL3wqj4JSMLlcvcfbE2gA==[/tex] 与直线 [tex=3.929x1.214]lpJ8hQocnvReENEAHudR1Q==[/tex] 所围成的图形.

    • 2

      求下列平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴旋转所产生的旋转体的体积. 曲线 [tex=3.286x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex] 与直线 [tex=6.071x1.214]k2h/9NoqgjWTQThx6Ax/BA==[/tex] 所围成的图形.

    • 3

      求下列各题中的曲线所围平面图形绕指定轴旋转的旋转体的体积:[tex=5.0x1.429]N4gzY2ZI5WeOBH70RVznSz4Jrf7oT9d6sVzr5xk+eH8=[/tex],绕[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴

    • 4

      求下列平面曲线所构成的旋转面的面积 星形线[tex=6.929x1.5]rKr9s6QU0K4f3uQl5H7tdP2RGOW+9aovIYBJ5wTU6+E=[/tex]绕 [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]  轴