• 2022-06-10
    求 [tex=3.5x1.429]L9pvxSP8pYbxQ6YJabGqzA==[/tex] 的导数
  • 解:[tex=14.429x1.5]c0I6c6NwgOWf1mnW9b8EBYtj4n9y3/DuW+9MfTy2SOtFirHahl0/l9AE8icSl7icIcs8FILIrRk1Vc6VKy5i5H1061TGkyNQy2ioYOLYRek=[/tex]

    内容

    • 0

      求函数[tex=3.5x1.429]ynlModmlRV0Gv01J7ly7iw==[/tex]的反函数及其定义域.

    • 1

      用导数定义求导数:[tex=4.5x2.643]nHHN4pLpj1G1uhQpyLUatowwPIwLnu3P84ibtuMgycE=[/tex],求[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex].

    • 2

      用导数定义求导数:[tex=3.571x1.0]jvDXr141ASoMfv4ROQ2oXQ==[/tex],求[tex=1.357x2.429]cWJSHEWUlBufMLmyWX04BHmYWTZFPPC9q3vmT7wjxc8=[/tex].

    • 3

      用导数定义求导数:[tex=3.643x1.5]8sCZNTLsdWVRiNtT0fYr3XT5a+EXohsaMOVW3nPyBlg=[/tex],求[tex=2.143x1.429]0mBW4j19SWcR4IFZyQje7Oh4pNXtNoYFRO+bL6e2Am4=[/tex].

    • 4

      证明:导数为常数[tex=3.5x1.429]hk+Fc8KySs2Whm5YuZ4Y4w==[/tex]的唯一函数[tex=9.429x1.357]4R1Le5eqlXIjlp9SOVWVKHuILcjN6u/rZH1Y8THXDJw=[/tex]是线性函数[tex=4.929x1.357]vQxZ0pVsh/IWn8lphilpcA==[/tex]