求下列函数的最大值、最小值:[tex=11.929x1.5]Cx58Fjq87X9ht9WIip46aVIolP84cTxD6GWVF4IQp2PFIYJE5SkLiFwdU9LxJEh8[/tex]
举一反三
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- .已知函数f(x)=cx+10小于x小于c;3x^4cx≥cx<1满足f(c^2)=9/8(1)求常数c的值(2)解不等式fx<2
- 已知 x = [6, 9, 8],那么执行语句 x.insert(0, 1)之后,x的值为( )。 A: [1, 6, 9, 8] B: [6, 9, 8, 1] C: [6, 9, 1, 8] D: [6, 1, 9, 8]
- 以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- 设x=2,y=3,则表达式y+=x的值是()。 A: 6 B: 8 C: 9 D: 5