A: Apart[(-5x^2-4x)⁄((x-1)(x^2+2)^2)]
B: Simplify[(-5x^2-4x)⁄((x-1)(x^2+2)^2)]
C: Cancel[(-5x^2-4x)⁄(x-1)(x^2+2)^2]
D: ApartsquareFree[(-5x^2-4x)⁄((x-1)(x^2+2)^2)]
举一反三
- 以下哪个Q[x]中的最简分式?() A: (x-1)/(x+1) B: (x^2+2x)/x^4 C: (x-1)/(x^2+2)^2 D: x^5/(x^2-1)
- 函数$f(x)={{(x+2)}^{2}}{{(x-1)}^{3}}$的极值点是( )。 A: $x=-2$ B: $x=1$ C: $x=-2$ 与 $x=1$ D: $x=-2$ 与 $x=-\frac{4}{5}$
- 下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
- $(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
内容
- 0
函数 $y=e^ x - 2^x$的导数 A: $e^ x - 2^x $ B: $e^ x - 2^{x-1} $ C: $e^ {x-1} - 2^{x-1} $ D: $e^ x - 2^x \ln 2 $
- 1
不等式(x+2)(x-1)>0的解集为 A: {x|x<-2或x>1} B: {x|-2<x<1} C: {x|x<-1或x>2} D: {x|-1<x<2}
- 2
方程5x=1+4x的解是(). A: x=-5 B: x=-1 C: x=1 D: x=2
- 3
求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 4
求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是: