f1(t)=e-2tu(t+1),f2(t)=u(t-3)
举一反三
- 【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)
- 【单选题】已知f 1 (t)=tε(t),f 2 (t)=ε(t)-ε(t-2)试求y(t)=f 1 (t)*f 2 (t-1)*δ’(t-2) A. (t-3)u(t-3)-(t-5)u(t-5) B. (t-2)u(t-2)-(t-5)u(t-5) C. (t-3)u(t-3)-(t-4)u(t-4) D. (t-3)u(t-2)-(t-5)u(t-3)
- 已知f1(t)=u(t+1),f2(t)=u(t+2)-u(t-2),设y(t)= f1(t)* f2(t),则y(0)等于() A: 0 B: 1 C: 2 D: 3
- 已知f1(t)和f2(t)波形如下,若f(t)=f1(t)*f2(t),则f(0)= A: 1 B: 2 C: 3 D: 4
- 假设f1(t)和f2(t)如图所示,f(t)=f1(t)*f2(t),则f(1)= ( )[img=356x170]18037095681b0cf.png[/img] A: 2 B: -2 C: 4 D: -4