设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,[tex=3.643x1.286]K+xSEYxtgmH0spapC90XTA==[/tex],且对于[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的一切[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]和[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]有[tex=9.5x1.286]kC9id43jzqX0oRCJnCdwQ1169C0BxCZmZur9DJrKjq8=[/tex],试估计积分[tex=4.571x2.429]KEskdFvxflbt/GW6hsSi7QbV8h0e0k/1UZEEWEOI2Mw=[/tex]的值。
举一反三
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上可微,对于[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的每一个[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 的值都在开区间 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内, 且 [tex=3.929x1.286]0VLGTLK6v3MkNP58z7HiHRiYa+tAByiT7/p78X428Zo=[/tex], 证明在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有且仅有一个 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],使[tex=3.786x1.286]a7syGVnHJ8vV4xZ+ta96jg==[/tex]。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,且[tex=4.929x1.286]Tl8MB4h1s5yhfAlp+4THMA==[/tex],求证:存在[tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex],使[tex=7.643x2.357]oQcl4jo5HYDn2Se78tIWRPrgLZJ+l4DivZb27VGeqvh0K4mInGNwJMnUj2avgCsW[/tex]。
- 当所有观察值都落在回归直线[tex=4.857x1.286]YttdvEHOQqAZteB7q5Z4oQ4xfPO9Q6I4BwjULK11yQ8=[/tex]上时,则[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]之间的相关系数为[input=type:blank,size:6][/input] . A: 0 B: 1 C: +1或-1 D: 小于1且大于0
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 当所有观察值都落在回归直线 [tex=4.857x1.286]YttdvEHOQqAZteB7q5Z4oQ4xfPO9Q6I4BwjULK11yQ8=[/tex] 上时,则 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 与 [tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 之间的相关系数为 A: 0 B: 1 C: +1或-1 D: 小于1且大于0