设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂2z/∂x∂y=()。
A: yf′(xy)+φ′(x+y)+yφ′′(x+y)
B: yf′′(xy)+φ(x+y)+yφ′′(x+y)
C: yf′′(xy)+φ′(x+y)+yφ′′(x+y)
D: yf′′(xy)+φ′(x+y)+yφ′(x+y)
A: yf′(xy)+φ′(x+y)+yφ′′(x+y)
B: yf′′(xy)+φ(x+y)+yφ′′(x+y)
C: yf′′(xy)+φ′(x+y)+yφ′′(x+y)
D: yf′′(xy)+φ′(x+y)+yφ′(x+y)
举一反三
- A.yf’’x(xy)+φ’x(x+y)+yφ’’(x+y) A: φ’(x+y)+yφ’’(x+y) B: yf’’(xy)+φ’(x+y) C: yf’’(xy)+φ’(x+y)+yφ’’(x+y) D: 设,其中f,φ二阶可导,则等于()。
- 设函数z=f(x,y)=xy/(x2+y2),则下列结论中不正确的是() A: f(1,y/x)=xy/(x+y) B: f(1,x/y)=xy/(x+y) C: f(1/x,1/y)=xy/(x+y) D: f(x+y,x-y)=xy/(x+y)
- 设z=1xf(xy)+yϕ(x+y),f具有二阶偏导数,则∂2z∂x∂y=______.
- 设f(x,y)=x[sup]2[/]-y,则f(xy,x+y)=( )。 A: x<sup>2</sup>-x-y B: x<sup>2</sup>y<sup>2</sup>-x-y C: x+y-x<sup>2</sup>y<sup>2</sup> D: (x+y)<sup>2</sup>-xy
- 设全体域D是正整数集合,确定下列命题的真值: (1) "x$y (xy=y) ( ) (2) $x"y(x+y=y) ( ) (3) $x"y(x+y=x) ( ) (4) "x$y(y=2x) ( )