• 2022-06-14
    试证下列各函数为调和函数,并求出相应的解析函数[tex=4.143x1.357]LogYAzAvCq1eGBWwADRiTDEXgIiuKOaEt6GvKoBkivE=[/tex]. [tex=2.357x1.0]JjGYng9ZYe1dDhs7Z0+1Ww==[/tex];
  • [tex=5.5x2.5]fBfVb+VM693Cqc4RukcmZ64TKJEi9ce2NHyZL66+O4M=[/tex]

    内容

    • 0

      证明函数[tex=7.357x1.5]6fiPBcL0iUH5inRtC3/AALZPJbKDC9g8o1un1ZPf/s8=[/tex]为调和函数,求出解析函数[tex=4.643x1.357]Vk/CVBWmjrgkz3CajpNVVg==[/tex]

    • 1

      如果[tex=4.714x1.357]WVXxmENOyLsrAK1u24ZaKpfiudWoCMFKE7yFzwDqM2w=[/tex]是一解析函数,试证:(1)[tex=2.143x1.786]4KZ/pO3sLF10383T2p50AW8R8WCm4Eix38GcIab+i3pwQwzF+fKFx+fNj5ugVqci[/tex]也是解析函数(2)-u是v的共轭调和函数。(3)[tex=8.929x2.714]VGXzV15psxV0cBMwKVrVbuMoOXdV+Yk2MpPVTJAvfxMCkIE3bPD/y0Sxfc1i847aFfKM2ml7yjnGpx5L1BLATZBsa7LoRJpwet6xLTvJptc4CCpsVuNX5Ot7Bqn2RJCiclGj4NQRw7fbKhp2F0ajXw==[/tex]=[tex=8.857x1.643]Q0Ezd43LDeNGSFF1HD/X+nVEh77NG1HPyrxZMPH3igXsS6p9dc+DNDH3M8YtOEmzDfM1ltfMQmlTNS1Y3AOXC9SS+kODOYzv283/UaXaVtQ=[/tex]

    • 2

      试证下列函数在 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 平面上解析,并分别求出其导函数:[tex=13.929x1.357]GQ+nSb4oJ6L+gsvyyKbo+6vyUD6FMNarxbLOKmol+TtZTlM67veYHHAjaEcPcfh/Po4no6d9cJhHefD9CZ28Mg==[/tex]

    • 3

      试证[tex=8.786x2.357]TnUDpRqmp498lq23BsppU5DHMFH1fKl7zMotzn8+SyM2n30HbyVGiZLMXCNDIzQC[/tex]都是调和函数,但 [tex=2.214x1.143]hSY9o2OT3oZRiVc2tzqZ/w==[/tex]不是解析函数.

    • 4

      如果[tex=4.714x1.357]k7ZZy29fAPTldYCnWZx7/A==[/tex]为解析函数,试证 [tex=1.357x1.071]og+VaJoemW8SvHvpKGJoig==[/tex]是[tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex]的共轭调和函数.