证明:[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]和[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex]都是极小非平面图。
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 讨论[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex] 与 [tex=1.214x1.214]6WSs2HoeTjDhtmqTp8KAgA==[/tex] 各有几个非同构的生成子图是正则图.
- 画出 [tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]的 3 条边的所有非同构的子图.
- 证明:[tex=1.214x1.214]j06tnoZ4NyXuHtqWvo0Kfw==[/tex]是非平面图。
- [tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]$的非同构的生成子图中有[input=type:blank,size:6][/input]个是生成树.