设向量组[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与向量组[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的秩相等,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组可由[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组线性表示。证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组等价。
举一反三
- 设[tex=3.143x1.214]fC00PSr7EsIcGln2s0pq/A==[/tex]为3个随机事件,则下列结论中正确的是 未知类型:{'options': ['若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]互不相容,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容[br][/br]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]对立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]对立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]也是对立事件', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]独立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]独立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]一定独立[br][/br]'], 'type': 102}
- 设有向量组[tex=8.071x1.214]Mdl5SvJLPWwKArgK4Ta6j3l7EaXa+zhJXo0rPe0F/fLHhrYOFnnWnQKmBtyXiEqBbljE4xNvGj0KKJpF/wCa9Jqzol6QqJ+jQIfh4xKmXNjLM2WgDkUXj9CtB5g71A74[/tex],证明(1)[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的任何部分组线性相关,则整体组线性相关;(2)向量组[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]线性相关,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的任何部分组线性无关.
- 证明事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相互独立 [tex=0.5x1.0]rYOiDj8WGCtLXbsoCBShoA==[/tex] 事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 补([tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 的补集)相互独立。
- 进行 4 次独立重复试验,每次试验中事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生的概率为0.3,如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不发生,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]也不发生;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 1 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.4 ;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.6;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次以上,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]一定发生.求事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率.
- 证明: 如果 [tex=8.5x1.357]RSZqSdXbbE6ZW6RyApSysQ==[/tex], 则当 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 互斥时, [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 不独立.