举一反三
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$
- 设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].
- 若要求:当数学式3 A: if(x>3)if(x<7)y=1; B: if(x>3||x<7)y=1; C: if(x<3);elseif(x<7)y=1 D: if(!(x<=3))y=y;elseif(7>x)y=1;
- 设[tex=5.929x1.071]gAFI4ZzNAmjFfJAphmTsRQ==[/tex],若[tex=7.786x1.357]09fTpcwFMVcu1qrv9hyVbjaVP6Nu0Q7b0o9JCaEhfzk=[/tex],[tex=7.786x1.357]17Fg+KbtgLZdNaerla1J+g==[/tex],[tex=7.714x1.357]GzWWzGNDry0+/hdju2Gv5Q==[/tex],那么[tex=0.571x0.786]/uIIzJZ/1DPgc5sOsRpAXQ==[/tex],[tex=0.571x1.0]Tr41q2//n6lfFMLRmh8s0w==[/tex],[tex=0.5x0.786]rGd4FFr4Zsu+cuz6gxITMA==[/tex]的大小关系为 A: x<y<Z B: y<z<x C: z<x<y D: z<y<x E: 不能确定
内容
- 0
求下列等距变换:绕原点旋转[tex=2.929x2.357]h9HJbSm9Zyrln2sFOGWBnA3bt6pAwCc62TiXOFYPa90=[/tex],再按向量[tex=3.0x1.357]qsQqkYqzZ+6y725FsuSvVw==[/tex]平移.
- 1
以下四个命题中,正确的是 未知类型:{'options': ['若 [tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内连续,则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex] 内有界', '若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内连续, 则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界', '若[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界, 则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界', '若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界,则[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界'], 'type': 102}
- 2
求由x轴、曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]及曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]过原点的切线所围成图形的面积, 并求该图形分别绕x轴与y轴旋转所得旋转体的体积.
- 3
Simplify the expression:$({\frac{3x^{3/2}y^3}{x^2y^{-1/2}})^{-2}}$Which answer is CORRECT? A: $9xy^7$ B: $\frac19 xy^{-7}$ C: $\frac19 x^{-1}y^7$ D: $9 x^{-1}y^7$
- 4
设随机变量X与Y,且D(X)=25 . D(Y)=36 .[tex=6.929x1.357]YRHgHmN/yZW92ECOHesamh6DUEs33HnR+2dxr68Tcr4=[/tex]求[tex=4.286x1.357]wxsI0NJpCsUWd6vdcOiJiw==[/tex]