求函数y=ln(sinx)的导数用Matlab语言表示为( )
A: dy1=diff(ln(sin(x)),x,1)
B: dy1=diff(log(sin(x)),x,1)
C: dy1=diff(log(sinx),x,1)
D: dy1=diff(ln(sinx),x,1)
A: dy1=diff(ln(sin(x)),x,1)
B: dy1=diff(log(sin(x)),x,1)
C: dy1=diff(log(sinx),x,1)
D: dy1=diff(ln(sinx),x,1)
举一反三
- <img src="http://edu-image.nosdn.127.net/E6A0628104FCB0F521FBF2AAAC7F1968.png?imageView&thumbnail=890x0&quality=100" style="width: 558px; height: 33px;" />? syms xy=log(1/x*x+exp(x))+sin(1-x^2)dy/dx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x^2)dydx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x)^2dydx=diff(y,x)|syms xy=log(1/x/x+exp^x)+sin(1-x^2)dydx=diff(y,x)
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2
- 设\(z = {\log _y}x\),求\({z_x}\)= A: \({1 \over {y\ln x}}\) B: \({1 \over {\ln x}}\) C: \({1 \over {x\ln y}}\) D: \({1 \over {ln y}}\)
- 设函数y=ln(2x),则微分dy= A: B: C: 1/2x D: 1/x