设\(z = {\log _y}x\),求\({z_x}\)=
A: \({1 \over {y\ln x}}\)
B: \({1 \over {\ln x}}\)
C: \({1 \over {x\ln y}}\)
D: \({1 \over {ln y}}\)
A: \({1 \over {y\ln x}}\)
B: \({1 \over {\ln x}}\)
C: \({1 \over {x\ln y}}\)
D: \({1 \over {ln y}}\)
举一反三
- 设\(z = {e^ { { y \over x}}} + {x^y} + {y^x}\),则\({z_x} = \) A: \({1 \over x}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) B: \(- {y \over { { x^2}}}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) C: \({e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\) D: \( - {y \over { { x^2}}}{e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\)
- 函数\(y = \ln \ln x\)的导数为( ). A: \({1 \over {x\ln x}}\) B: \( - {1 \over {x\ln x}}\) C: \({1 \over {\ln x}}\) D: \( - {1 \over {\ln x}}\)
- 设\(z = {\log _y}x\),则\({z_y} = { { \ln x} \over {y { { \ln }^2}y}}\).
- 下列微分方程中,( )是齐次方程。 A: \( xy' = y(\ln y - \ln x) \) B: \( xy' + {y \over x} - x = 0 \) C: \( y' + {y \over x} = {1 \over { { x^2}}} \) D: \( y - y' = 1 + xy' \)
- 已知\( y = \ln \left| x \right| \),则\( y' \)为( ). A: \( {1 \over {\left| x \right|}} \) B: \( {1 \over x} \) C: \( - {1 \over x} \) D: \( x \)