设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在区间 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]上有定义,且 [tex=2.786x1.357]y1GD/EklRURhLjL3srHLMcR6UxgwOU0ByqGUOreCxB0=[/tex] 与[tex=2.357x1.286]wEUzJpbZthP7E9BbZV10lHGRPLbPgatg5A0kc0W1ogI=[/tex] 在区间[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex] 上都是单调增加的函数. 证明 [tex=2.429x1.357]lrCiwS81ZLblJbuP1EmZ5A==[/tex]在 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]上连续.
举一反三
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]上有定义,且函数 [tex=2.786x1.357]wpxGB022mDK6VdkVmwuelw==[/tex]与函数 [tex=2.357x1.286]HvzmmM5jy9wHUkZEptb7Og==[/tex] 在[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]上都是单调 递增的,求证 : [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]上连续.
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在闭区间 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex] 上连续,在开区间 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex] 内可导,且 [tex=8.286x3.0]G6+1YvlrFaF5P6VmU9fE2DS/0iDMCyPAxzJiFHoWmePvQHjYU7G8KcZ6d3H2+L8aHxPQvbyXP1cPn+WOyl5f1A==[/tex] 求证: 在开区间 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]内至少存在一点 [tex=0.786x1.214]KegfMaYpIlzP8JA53y93/Q==[/tex]使得 [tex=4.214x1.429]aWJWVBG3St35JwVMiGniOsmb1i8xL21i2iKFOotkgrI=[/tex]
- 设[tex=1.786x1.0]+MkgvJhrh9DSU9I+bn6v4w==[/tex]为自然数, [tex=6.929x1.357]2LZzTi81ULUSPBhlVnGFH9KT42hSyvVJIvDrni7+Mtk=[/tex], 则[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]在[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]内零点个数为[input=type:blank,size:4][/input](单项选择). A: 0 B: 1 C: 2 D: 3
- 证明: 函数 [tex=3.643x2.357]/rfaeC7rixaiOc8a8ohq6gmbGMplYzQ6WfohaP+bxFU=[/tex] 在区间 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex] 上是连续的,但在此区间上并非一致连续的.
- 证明方程 [tex=5.429x1.357]2R2oGUi94NAZthlkX+oa/w==[/tex] 在区间 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]内只有一个正根.