利用单调有界数列收敛准则证明下列数列的极限存在.[tex=10.143x2.429]PQFiji/X+PAXK5Mf5O9sysjL7nxlk8iGb2TkUn4RS04/yFW9ARVojzc5JrGVjglG[/tex].
举一反三
- 利用单调有界收敛准则,证明:数列x1=2^0.5,x(n+1)=(2+xn)^0.5(n=1,2,.)存在极限,并求出极限值
- 利用单调有界数列必定收敛的性质,证明数列 [tex=14.214x1.5]UebQy5BR388uInyUKzqkBdtI1AbNJAT+28Uwk/h0GxJiAykX3Y5pCfRF6C+JClNC/tGWumr+p1njrUicGGwO4Q==[/tex] 收敛,并求出极限.
- 观察下列数列的极限是否存在,如果存在,求出极限(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
- 利用 [tex=3.286x1.214]K1reZ+1xSIWCJSAffGD3BQ==[/tex] 收敛原理证明: 单调有界数列必定收敛.
- 利用关于单调有界数列极限存在的定理,证明以下各数列的收敛性:[br][/br][tex=15.143x2.786]ULAugtjOYQK+tBrizs5LR1hjz+QlTSiL6Q4HVs4m0iYT1lzn62NtJKwEECIQqv2NayAHEIkwqGeGDh8aa9oJGchWojNPyjphBGLOGS+zMbWBZHJ7eAggeERA+QGilhQ4[/tex]