设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立,且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从参数为 [tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 的 Poisson 分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从参数为 [tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex] 的指数分布,若 [tex=8.143x1.357]gBDYYCFh0ZruZ7ipUfoV7lGlCEj8FD2svJh3zTJAU/Y=[/tex],试求:[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 与 [tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 。
举一反三
- 当X服从参数为[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex]的指数分布时,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]分位数及中位数.
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]在圆域[tex=4.5x1.429]ptnhK+BqPbYzfoYOryGrkA==[/tex]上服从均匀分布(1)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex];(2)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是否独立.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求概率[tex=3.643x1.357]xOqWhxutW/jDEtv3HdF7DBtYx0Hk7e1l3Omnpa63lD0=[/tex].
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求二维随机变量[tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex]的联合概率密度.