举一反三
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立,且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从参数为 [tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 的 Poisson 分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从参数为 [tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex] 的指数分布,若 [tex=8.143x1.357]gBDYYCFh0ZruZ7ipUfoV7lGlCEj8FD2svJh3zTJAU/Y=[/tex],试求:[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex] 与 [tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 。
- 设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从参数为 1 的指数分布,[tex=2.286x1.0]9/9iwGqXp5QMYqkNTltYDNEowzysbRa2vywE4TxIMeI=[/tex],求[tex=2.214x1.357]ocoZdV18P73QTNWKFIScyg==[/tex].
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,均服从参数为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的[tex=2.286x1.143]gYH3bLZp3hQ23K/oQLCB7g==[/tex]分布,定义[p=align:center][tex=7.643x3.643]uTp1SXywanBkfZjW5eU7lPIP9aHAX4xIgHPIVUhfjihLWGj/nHH9HHsIScnA3x022uP3MgwKzy6SxEEvuHTsPQ==[/tex]求: [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 取何值时, [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex] 相互独立.
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从参数为 [tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex] 的指数分布,求 [tex=7.071x1.357]vmK4TtCZn/sMdbSADRsmYw==[/tex] 的分布函数和密度函数.
内容
- 0
进行重复独立试验,设每次试验成功的概率为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],失败的概率为[tex=8.0x1.357]HNVuFtAyiZQeZ0TpexXGgQ==[/tex](1)将试验进行到出现一次成功为止,以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示所需的试验次数,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律(此时称[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从以[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为参数的几何分布)
- 1
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]在圆域[tex=4.5x1.429]ptnhK+BqPbYzfoYOryGrkA==[/tex]上服从均匀分布(1)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex];(2)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是否独立.
- 2
假设随机变量[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从参数为[tex=2.429x1.0]wuwDfN6lUGwjOeh6IqESCg==[/tex]的指数分布,随机变量[tex=9.214x1.429]jfsrQuSp0KG8rSsSzzb8amWono0Vw7YNAC34X4N52d6HRtlO9l1sGYnU376c/m/7[/tex]求[tex=2.643x1.214]PK+WHT7CxL0VhaHGoSqwJw==[/tex]的联合分布率.
- 3
设随机变量 X服从二项分布 [tex=3.786x1.357]L4TgfyMuoYCq1SFUeY4IXQ==[/tex], 求 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数,并作出它的图像
- 4
[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从参数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的指数分布,而 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 是服从 [tex=2.0x1.357]13hO1E7iMz89y/8d++Roag==[/tex]上的均匀分布的随机变量.求 [tex=1.929x1.0]vVfLuNZHFtqwkH3I5PXF9g==[/tex] 时 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件期望.