将一颗均匀的骰子连郑 10 次,求所得点数之和的方差.
解 设 [tex=7.429x1.357]dGe2NwOUs7wEs1q/ypRUqdTCUAiWpRUK+LJ6ENi5IXg=[/tex] 为第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 次掷骰子所出的点数,则[tex=13.857x4.214]NJBV0ERKMmdxR2RYoefQdAlTRqceQLtPrqdA1LqK4nBHy3WMkedB1ASxcE4yanOqkBdk3pxqy8w6sNVIKcTAAcIytibDCLKb6yy8AUjLt8A5wwKnj5jPQnVTapkuR4N4Uz+h1V/R+ysibh7TxZ5m926rN6yJW/1cuRViJNDVT1vaUDX7simSdGKBfalZ8GEzbnNvcXMojDHXF3+VdFy5FFBDtyYWHzf8U1C9zBrfYoo=[/tex]10 次捨股子的点数之和为[tex=4.5x3.429]gTBNZAWlGoXhmzs0Z81ZqoVQUYtsMr91xJGQ64RsJ7k=[/tex]易得[tex=17.929x3.429]uoVQ7klvXXMCcIqTYFS1ZJlGohaPAi5/Zq+hmbhqTTzyZL22IKCseDULWhSHtWaYZDb4fcW1jUGLMlfH9ymt9eiLaF3YFvedcU3QzQ6dvBfp2cDiQtoiFyJrM8B3HaK9[/tex]及[tex=16.786x3.429]6ROiOA/QWTyJ+ARZTxJJj4TWJvYH8vANclVjSirzDJTY9zulC7s0A1gRB7bpMQTibusDx7Y90hGoQKTilWe3ItQDdOktxPFY0gLI5t5SvVdBZALJdYJeM0iVqvkyw+Y5XCgdrSXJWvHt+tXQQEJeyQ==[/tex]又因 [tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex] 相互独立,故[tex=7.857x3.429]w3ggUtrSFmnUXnFiZS5QdZBvAYM4YCDlVXcpj2kyrBVk/UaIN2AoX+bgTYJ5V+j1[/tex]其中[tex=19.143x4.214]+UKC6bniJvTTeNhVn6Y21GUqjjP5R0jhHeLt+dVrGLNaX6c7RYrKBbtSbRftdiVfrUPFqb/Mzk7aXkMAuKeoUNS4kyMiOXJXK9QvtaYceYA4QrLNo8i5g3LR+fgX1hY+ExFRU4xUgU2LGu6NthH44tSn74htND+vdc0KeIKz/qWUYYQbpxR3I1r3rPo28aANnNWCdOvU6oOxP7C5eCX9aMJizuI+qWOoGBp3r6KQDVG8JjFBKr+RsiXp3L0fk7hR[/tex]于是[tex=15.143x3.429]ZhIBTyq0Yso/IukDEIYe/L66jVj36TwPDsoAOpEqrufk5pFCeFkALFk17mEZ+Be3nJgIB22MQjpMSkNoxUbE+RgOlhVKmYJirzDmhRRJRZcoXSJz7ieXkhF8nROdtQ3r[/tex]
举一反三
- 将一颗均匀的骰子连掷 10 次,求所得点数之和的数学期望及方差。[br][/br]
- 求掷n颗骰子出现点数之和的数学期望与方差.
- 写出下列试验的样本空间:将一颗骰子郑若干次,直至掷出的点数之和超过 2 为止。
- 求掷[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]颗骰子出现点数之和的数学期望与方差.
- 将一颗骰子连掷[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]次,以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]次所得点数之和,试求X的分布列,并验证它满足分布列的两个基本性质。
内容
- 0
将一颗骰子抛掷两次,以[tex=1.214x1.214]AKRJ+piA0nf7C/6/dimpFw==[/tex]表示两次所得点数之和,求[tex=1.214x1.214]AKRJ+piA0nf7C/6/dimpFw==[/tex]的分布律.
- 1
掷10颗均匀的骰子,求掷出的点数之和的数学期望.
- 2
掷一颗骰子两次,求其点数之和与点数之差的协方差.
- 3
求下列试验的样本空间:投掷一枚均匀的骰子两次,记录点数之和.
- 4
连续地掷一枚骰子80 次,求点数之和超过300 的概率.