设袋内有[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex]([tex=2.429x1.143]JfRk0TIv5kZsg8a9WQ7xig==[/tex])个白球, [tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]个黑球,在袋中接连取 3 次,每次取 1 个球,取后不放回,求取出的 3 个球都是白球的概率.
举一反三
- 袋中有 3 个白球与 7 个黑球,甲乙二人轮流从袋中取球,第一次甲取,第二次乙取,[tex=2.786x0.786]h7jgYwRx02cjOnrS6eBM8A==[/tex],每次取 1 个球,取出的黑球不再放回去,直至取出 1 个白球为止.求各人先取出白球的概率.
- 袋内有[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]个白球,[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个黑球,从袋中不放回地每次任取1球,连取3次,试求取到球的颜色依次为白、黑、白的概率.
- 袋中有1 个红球、2 个黑球与 3 个白球,现有放回地从袋中取两次,每次取一个球, 以 [tex=3.0x1.214]zlF4+c8ixdgeqVPNk5Najw==[/tex] 分别表示两次取球所得的红球、黑球与白球的个数. 求(1) 二维随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布律; (2) [tex=6.357x1.357]VlpfF2WFZj5Db3FppeuviN1PXaKH508LtJudByw7Txw=[/tex]
- 袋中有 [tex=0.5x1.0]+ElP8Glp1jNyDFWBiVUf/g==[/tex] 个球,其中红球 [tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex] 个,白球 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 个,从袋中取球两次,每次随机地取一个球,取 后不放回.求两次取得一红球一白球的概率.
- 袋中有[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]球,其中[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]个红球、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]个白球、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]个黑球[tex=6.214x1.357]9cd23L7i/RJiYWDv4NITmA==[/tex],每次从袋中任取一球,共取[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次.设[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]分别表示[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次取球取出红球和白球的次数,在下列两种情况下,求二维随机变量[tex=2.214x1.357]p6HDDSVbX8TarWXhfmrDgg==[/tex]的分布律.(1) 每次取出的球仍放回去(放回抽样);(2) 每次取出的球不放回去(不放回抽样).