A: cos(2014*p/3)
B: cos(2014*π/3)
C: cos(2014*pi/3)
D: cos(2014*pi%3)
举一反三
- 求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
- 曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
- 已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
- 计算60°的正弦函数值,在MATLAB中命令行窗口输入命令为( ) A: sin(60) B: cos(60) C: sin(pi/3) D: cos(pi/3)
- 1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
内容
- 0
在0~4π 区间绘制y=5cos(10t+π/3)关系曲线,下述哪个程序正确? A: t=0:4*pi, y=5cos(10t+pi/3) B: t=0:0.1:4π, y=5*cos(10*t+π/3) C: t=0:4π, y=5*cos(10*t+π/3) D: t=0:0.1:4*pi, y=5*cos(10*t+pi/3)
- 1
已知向量a=(2,2,1),则a的方向余弦为(). A: cosα=2/3,cosβ=2/3,cosγ=1/3 B: cosα=2/5,cosβ=2/5,cosγ=1/5
- 2
已知\( y = \sin (2 + \tan 3) \),则\( y' \)为( ). A: 0 B: \( \cos (2 + \tan 3) \) C: \( \tan 3\cos (2 + \tan 3) \) D: \( {\sec ^2}3\cos (2 + \tan 3) \)
- 3
画出连续时间信号[img=236x25]18034af68fd6486.png[/img]的采样信号,采样周期为1/40s,正确的MATLAB语句是( ) A: stem([0:1/40:1],cos(20*pi*[0:1/40:1])); B: plot([0:1/40:1],cos(20*pi*[0:1/40:1])); C: fplot('cos(20*pi*t)',[0:1]); D: t=0:0.01:1; xc=cos(20*pi*t); plot(t,xc);
- 4
<img src="http://edu-image.nosdn.127.net/2507E32A7888F1F05F34CD6088FE894F.png?imageView&thumbnail=890x0&quality=100" />? AC+AB×cosθ1=BC×cosθ3; AB×sinθ1=BC×sinθ3<br >|AC+AB×cosθ1=BC×cosθ3; AB×cosθ1=BCcos×θ3<br >|AB×sinθ1=BC×cosθ3; AC+AB×cosθ1=BC×sinθ3|;AB×cosθ1=BC×cosθ3; AC+AB×sinθ1=BC×sinθ3<br >