求曲线[tex=2.786x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex]与直线[tex=4.0x1.214]An54X9kuw9HgGkjH0a2Czw==[/tex]和[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴和[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转而得的旋转体体积;
举一反三
- 求由曲线 [tex=2.786x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex],直线[tex=1.857x1.0]CMo0rF5qZtcVHoxL36R95Q==[/tex] 以及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转而成的立体体积.
- 区域由曲线[tex=6.214x1.357]RKt9CzdSQyE4OjweWXJOaLdBCddLqAjvrwwIoaXdGtE=[/tex],直线 [tex=4.0x1.214]fTgroTGgk7GoVcGlL+0PsA==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成. 求下列旋转体的体积 公式:(1) 绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴 ; (2) 绕 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 ;(3)绕水平直线[tex=1.857x1.214]2q61NhXyDarSGYriVZMCyg==[/tex], 其中[tex=6.571x1.714]xmbeAqqtZRuKLAq90Tsc++Y5QV4mlm1ABvJ6YKs4y72SOu8tlNHlnD2ILX+v/un+[/tex]
- 曲线 [tex=6.571x1.357]Km+7w4n+VkbT9tn/vuDcHw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成一个平面图形,求此平面图形绕 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴旋转一周所成的旋转体体积.
- 求旋转体的体积:曲线[tex=2.286x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]和[tex=2.286x1.429]p7OFYSj0xO0ufHtO0ACOCg==[/tex]所围成的平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转而得的旋转体
- 求下列平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴旋转所产生的旋转体的体积. 曲线 [tex=3.286x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex] 与直线 [tex=6.071x1.214]k2h/9NoqgjWTQThx6Ax/BA==[/tex] 所围成的图形.