设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的二元关系有( )个,其中有( )个是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的函数。
举一反三
- 设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系共有( )个。 A: 13 B: 14 C: 15 D: 16
- 设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的划分共有[tex=1.786x1.357]usER9ONgZswYFJMShSFlRg==[/tex]个。 A: 13 B: 14 C: 15 D: 16
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是由 4 个元素组成的集合,试问在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上可以定义多少个不同的等价关系?
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 如果集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个元素,问[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共有多少个子集?[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的真子集有几个?