当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理。如,可设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,则可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,那么在区间[a,b]上的反常积分也收敛
举一反三
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理。如,可设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,则可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,那么在区间[a,b]上的反常积分也收敛
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理:例如,设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,那么可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,则在区间[a,b]上的反常积分也收敛。
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理:例如,设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,那么可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,则在区间[a,b]上的反常积分也收敛。(1.0分)
- 当 在有界区间 上存在多个瑕点时, 在 上的反常积分可以按常见的方式处理:例如,设 是区间 上的连续函数,点 都是瑕点,那么可以任意取定 ,如果反常积分 同时收敛,则反常积分 收敛。()
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式...,那么在区间[a,b]上的反常积分也收敛