求一阶常微分方程在区间[0,1]内初值为y(0)=1的数值解。
程序如下:
f=@(x,y) x.*y;
[x,y]=____________________;用4~5阶的龙格-库塔算法求解/ananas/latex/p/124772
程序如下:
f=@(x,y) x.*y;
[x,y]=____________________;用4~5阶的龙格-库塔算法求解/ananas/latex/p/124772
举一反三
- 求一阶常微分方程在区间[0,1]内初值为y(0)=1的数值解。 程序如下: [email protected](x,y) x.*y; [x,y]=____________________;用4~5阶的龙格-库塔算法求解/ananas/latex/p/124772
- 已知曲线积分与路径无关,其中F(x,y)具有一阶连续偏导数,且F(0,1)=0,求由F(x,y)=0确定的隐函数y=f(x)./ananas/latex/p/462099
- 设(X,Y)的取值为(0,0),(0,1),(1,0),(1,1),已知P(X=0,Y=0)=0.4,P(X=0,Y=1)=P(X=1,Y=0)=P(X=1,Y=1)=k,则k的值为
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]
- 如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')