设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且其极小多项式的次数等于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] . 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型中各个 Jordan 块的主对角线上元素互不相同.
举一反三
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互不相同的特征值, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式 和极小多项式相等.
- 一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶有理数矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的极小多项式是一个有理数域上的不可约多项式, 问 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型是否必是对角矩阵?[input=type:blank,size:4][/input]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且有特征值 1, 又 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 只有一个线性无关的特征向量. 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型.
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的主对角线元素互不相同,试证与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可交换的矩阵必是对角阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是严格对角占优阵且主对角线上的元素全为正, 则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵.