举一反三
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和对角矩阵 [tex=9.286x1.357]4hVOD4TWSI62OX9AhSJlcFT9/s8GpEqLGvCv8s+mV12qyqoqYS5txrxH/yqVh2LI[/tex] (或任意一个主对角元素互不相同的对角矩阵) 乘法可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是对角矩阵; 若进一步 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 还和第一类初等矩阵可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是数量矩阵 [tex=1.429x1.214]FxIjkBm1yL0dMFtX1spLfQ==[/tex] (由此可知, 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数量矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和所有可逆矩阵可交换).
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是严格对角占优阵且主对角线上的元素全为正, 则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵.
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=4.286x1.357]M8pBlvV+S4LQnhAnSAKoXw/P7X8DAabMY3TupXqT7NSjfT7K5RGfXHWdaekRkXAfTKkpTigD5xQ3xzNaahKuWQ==[/tex],称[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为正规阵,证明:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为正规阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与对角阵酉相似。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 中绝对值最大的元素只在 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的所有主子式全大于零, 特别, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上的元素全大于零
内容
- 0
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且其极小多项式的次数等于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] . 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型中各个 Jordan 块的主对角线上元素互不相同.
- 1
矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是上三角矩阵且主对角线上的元素全相同, 除主对角线上的元素外, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 至少还有一个元素非零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型必不是对角阵.
- 2
证明 : 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与所有 [tex=0.714x0.786]6aVdGcNDEBq8XNsxxe6TUKJi2/iXUJ0aYNv4lG2aSNE=[/tex] 阶对角矩阵可交换的充分必要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.714x0.786]6aVdGcNDEBq8XNsxxe6TUKJi2/iXUJ0aYNv4lG2aSNE=[/tex] 阶对角矩阵.
- 3
当 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合条件 ( ) 时,它必相似于对角阵. 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征向富', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是上二角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵'], 'type': 102}
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合下列条件 ( ) 时, [tex=2.429x1.214]w0DJAkqgaLBmdaL0DbtIKg==[/tex] 必是可逆矩阵. 未知类型:{'options': ['[tex=2.643x1.0]T6KgxyahhCNAGhkx/jtGQw==[/tex]', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是可逆矩阵', '[tex=2.643x1.357]ynAnlsS4a0FhNAU9AfGT6A==[/tex]', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上元素全为零'], 'type': 102}